The Friedel-Crafts Type Methanesulfonylation of Deactivated Benzenes

Mitsunori ONO,* Yoshisada NAKAMURA, Shingo SATO, and Isamu ITOH Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Kanagawa 250-01

The participation of nonionic donor-acceptor complex [A] was suggested by the analyses of product isolated in the Friedel-Crafts reaction of m-dichlorobenzene with ${\rm CH_3SO_2Cl}$ in the presence of AlCl $_3$. On the basis of these observations a new practical method of methanesulfonylation of deactivated benzenes employing methanesulfonic anhydride and ${\rm CF_3SO_3H}$ was developed.

There are several methods of synthesizing methyl aryl sulfones from sulfides, sulfoxides and their derivatives. The most practical laboratory method of preparing methyl aryl sulfones is the Friedel-Crafts reaction employing methanesulfonyl chloride, aromatic hydrocarbon and ${\rm AlCl}_3$ catalyst. The structure of electrophilic complexes has been widely discussed, and the oxo sulfonium salt ${\rm [B]}^4$ (Scheme 1) is regarded as a plausible reactive species. However, it is also

$$RSO_{2}X + M_{n}X_{m} \longrightarrow RSO_{2}^{+} + M_{n}X_{m+1}$$

known that the Friedel-Crafts type methanesulfonylation reactions have serious limitations in particular for certain deactivated benzenes containing halogen or nitro substituents, owing to the electron-withdrawing nature of them. ⁵⁾ In fact, it is reported that the methanesulfonylation of \underline{la} , \underline{lb} , and \underline{lc} gives the corresponding methyl aryl sulfones in extremely low yield (0-10%), leaving a considerable amount of the starting materials unchanged. ⁶⁾

$$\frac{1a}{R^{2}} : R^{1} = C1, R^{2} = R^{3} = H$$

$$\frac{1b}{E} : R^{1} = R^{2} = C1, R^{3} = H$$

$$\frac{1c}{E} : R^{1} = NO_{2}, R^{2} = R^{3} = H$$

$$\frac{1d}{E} : R^{1} = R^{3} = C1, R^{2} = H$$

In connection with our program in the chemistry of phenolic azo dyes exhibiting a low pKa value, $^{7)}$ we examined in detail the Friedel-Crafts methanesulfonylation of m-dichlorobenzene $\underline{1d}$. On the basis of the analyses of the experimental facts, we found a new practical approach involving heating of methanesulfonic anhydride in the presence of CF_3SO_3H , and the results are presented in this communication.

396 Chemistry Letters, 1988

Treatment of $\underline{1d}$ (1.0 equiv.) with methanesulfonyl chloride (0.8 equiv.) in the presence of AlCl_3 (0.8 equiv.) without solvents gave rise to a mixture of 2,4-dichloro-methylsulfonylbenzene $\underline{2}$ (mp 70-72 °C; 15%), 2,4-dichloro-methylsulfinylbenzene $\underline{3}$ (mp 89-90 °C; 20%), and 1,2,4-trichlorobenzene $\underline{4}$ (35%). The structure of $\underline{3}$ was determined by the following spectral data: MS m/z 208 (M⁺); $^1\mathrm{H-NMR}$ δ (CDCl $_3$) 2.75 (s, 3H, CH $_3$), 7.43 (d, 1H, J=2 Hz, C-3-H), 7.50 (dd, 1H, J=2 and 7 Hz, C-5-H), and 7.91 (d, 1H, J=7 Hz, C-6-H). In addition, $\underline{3}$ was easily converted into $\underline{2}$ on oxidation with CH $_3\mathrm{CO}_3\mathrm{H}$ at 85 °C.

$$\underline{1d} \qquad \underbrace{\text{CH}_{3}\text{SO}_{2}\text{C1}}_{\text{AlCl}_{3}} + \underbrace{\text{C1}}_{\text{C1}} \underbrace{\text{SO}_{2}\text{CH}_{3}}_{\text{CH}_{3}\text{CO}_{3}\text{H}} + \underbrace{\text{C1}}_{\text{C1}} \underbrace{\text{C1}}_{\text{C1}} \underbrace{\text{C1}}_{\text{C1}} + \underbrace{\text{C1}}_{\text{C1}} \underbrace{\text{C1}}_{\text{C1}} + \underbrace{\text{C1}}_{\text{C1}} \underbrace{\text{C1}}_{\text{C1}} + \underbrace{\text{C1}}_{\text{C1}$$

To our knowledge, the unexpected $\underline{3}$ and $\underline{4}$ are the first products isolated in the Friedel-Crafts methanesulfonylation reaction of dichlorobenzenes. As shown in Fig. 1, the formation of $\underline{4}$ seemed to proceed independently of that of $\underline{2}$. Further reaction of $\underline{2}$ under the same conditions resulted in the recovery of unreacted $\underline{2}$. Moreover, treatment of $\underline{1d}$ with methanesulfonyl chloride in the presence of AlBr $_3$ gave 1-bromo-2,4-dichlorobenzene $\underline{5}$ as a sole isolable product, together with gaseous bromine.

These observations support the assumption that the formation of $\frac{4}{2}$ is explained in terms of an electrophilic chlorination. Owing to the difficulty of generation of an electrophilic centre on the halogen atom (X) of the ionic salt [B], it is considered that the formation of both $\frac{3}{2}$ and $\frac{4}{2}$ preferably derived from the non-ionic complex [A] regarded as a transient one. The plausible pathways (a and b) which account for the formation of $\frac{3}{2}$ and $\frac{4}{2}$ are summarized in Scheme 2.

The complex [E] leading to $\underline{3}$ would be formed by the electrophilic substitution of $\underline{1d}$ with the polarized chlorine atom of the complex [D] (S_N^2) and/or by the elimination of Cl₂ from the complex [D] (S_N^i). In spite of the fact that the Friedel-Crafts sulfonylation is realized as a modification of the acylation reaction, 11) it is interesting to note that the behavior of the reaction suggests the intermediary participation of the oxygen-coordinated donor-acceptor complexes [D] and [E].

These findings also indicate the limitation of the Friedel-Crafts sulfonylation by use of <u>alkylsulfonyl chloride</u> in the presence of $\underline{\text{AlX}}_3$ and led us to the examination of alternative approaches generating no halonium ions. As a results, we found the addition of a catalytic amount of $\text{CF}_3\text{SO}_3\text{H}^{12}$ in a small excess of methanesulfonic anhydride is effective for methanesulfonylation of $\underline{\text{Id}}$ (83%) (Table 1, entries 1-5). This procedure is also applicable to other deactivated benzenes and

Table 1. Results of Methanesulfonylation of Deactivated Benzenes with Methanesulfonic Anhydride $((CH_3SO_2)_2O)^a)$

Entry	Substrate	Solvent	Catalyst	Time/h	Temp/°C	Products(Yield/%)
1	<u>ld</u>	Cl ₂ C=CCl ₂	^H 3 ^{PO} 4	3	120	no reaction
2	<u>1d</u>	neat	H ₃ PO ₄	3	120	no reaction
3	<u>ld</u>	neat	H ₂ SO ₄	3	120	$\underline{2}$ (17) $\underline{1d}$ (53)
4	<u>ld</u>	neat	сн ₃ so ₃ н	5	120	<u>2</u> (37) <u>1d</u> (52)
5	<u>ld</u>	neat	CF ₃ SO ₃ H	3	120	<u>2</u> (83) <u>1</u> d (3)
6	<u>la</u>	neat	CF ₃ SO ₃ H	2	100 C	SO ₂ CH ₃ (85) -o:-p=1:2
7	<u>lb</u>	neat	CF ₃ SO ₃ H	3	90 C	1 So ₂ CH ₃ (60)
8	<u>lc</u>	neat	CF ₃ SO ₃ H	5	120	SO ₂ CH ₃ (20)
9	F Cl	neat	CF ₃ SO ₃ H	3	90	So_2CH_3 (65)
10 E	Br Cl	neat	сг ₃ so ₃ н	5	140 C3	SO ₂ CH ₃ (38)
11 H	3C NHAC	neat	CF ₃ SO ₃ H	4	90 H ₃ CC Act	
12 C	O2N CH3	neat	CF ₃ SO ₃ H	5	120 ^O 2 ^N	SO ₂ CH ₃ (55)
13	OCH ₃	neat	CF ₃ SO ₃ H	0.5	30 H ₃ CC	SO ₂ CH ₃ (85) -o:-p=1:2

a) Prepared in situ from SOCl₂ (2.0 equiv.) and CH₃SO₃H (5.0 equiv.).

gave the corresponding methyl aryl sulfones in fairly good yields (Table 1, entries 6-12).

A typical procedure is as follows: a solution of methanesulfonic acid (325 cm 3 , 5.0 mol) and thionyl chloride (145 cm 3 , 2.0 mol) was heated under reflux for 1 h. To the reaction mixture cooled to 25 °C was added 1d (147 g, 1.0 mol) and CF $_3$ SO $_3$ H (8.8 cm 3 , 0.1 mol). The whole mixture was heated at 120 °C for 3 h and cooled down to 50 °C, and then poured into ice-water (2 dm 3) and extracted with ethyl acetate (2 x 1 dm 3). The ethyl acetate solution was washed with water (2 x 1 dm 3) and saturated brine (2 x 1 dm 3), dried, and evaporated to leave crude crystals (230 g). Recrystallization from ethyl acetate/hexane (3 : 1) gave pure 2 as white crystals (mp 70-72 °C, 187 g, 83%)

The authors wish to thank Miss Reiko Shibata for carring out some of the analytical experiments.

References

- A. T. Fuller, J. M. Tonkin, and J. Walker, J. Chem. Soc., <u>1949</u>, 633;
 G. B. Barlin and W. V. Brown, J. Chem. Soc., B, <u>1967</u>, 648; L. Field and R. D. Clark, J. Org. Chem., <u>22</u>, 1129 (1957).
- 2) W. E. Truce and G. W. Vriesen, J. Am. Chem. Soc., 75, 5032 (1953).
- 3) M. Tashiro, Yuki Gosei Kagaku Kyokai Shi, 36, 426 (1978); R. Nakane, ibid., 36, 440 (1978).
- 4) G. A. Olah and A. M. White, J. Am. Chem. Soc., 89, 3591 (1967); B. Chevrier, J-M. LeCarpentier, and R. Weiss, ibid., 94, 5718 (1972); G. A. Olah, S. Kobayashi, and J. Nishimura, ibid., 95, 564 (1973).
- 5) A. Schoeberl and A. Wagner, "Houben-Weyl, Methoden der Organischen Chemie," 4th ed, Georg Thieme, Stuttgart (1955), Vol. IX.
- 6) E. E. Gilbert, J. Org. Chem., <u>28</u>, 1945 (1963); B. M. Graybill, ibid., <u>32</u>, 2931 (1967).
- 7) S. Ichijima and M. Ono, Japan Kokai, 61-184541 (1986).
- 8) The use of other Lewis acids ($FeCl_3$, $SnCl_4$) and also the use of any solvents with a high boiling point resulted in the recovery of ld.
- 9) The formation of Br_2 was also detected in the mixture of $\mathrm{CH}_3\mathrm{SO}_2\mathrm{Cl}$ and AlBr_3 even without $\underline{\mathrm{Id}}$; For an interesting behavior of the complexes: G. Holt and B. Pagdin, J. Chem. Soc., 1960, 2508.
- 10) As an example of similar chlorinations: E. C. Dart, G. Holt, and K. D. Jeffreys, J. Chem. Soc., 1966, 1284.
- 11) F. Klages and F. E. Malecki, Liebigs Ann. Chem., 691, 15 (1966); F. R. Jensen and G. Goldman, "Friedel-Crafts and Related Reactions," ed by G. A. Olah, John Wiley (1964), Vol. 3; G. A. Olah, "Friedel-Crafts Chemistry," Interscience, New York (1973).
- 12) F. Effenberger, Angew. Chem., 84, 295 (1972).